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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-549

EFFECTS OF HORIZONTAL-CONTROL PLANFORM
AND WING-LEADING-EDGE MODIFICATION ON LOW-SPEED
LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A
CANARD AIRPLANE CONFIGURATION*

By Bernard Spencer, Jr.
ABSTRACT

An investigation at low subsonic speeds has been conducted in the
Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal
planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept
80-percent-chord line. Modifications to the basic wing included deflec-
table full-span and partial-span leading-edge chord-extensions. A
trapezoidal horizontal control similar in plenform to the basic wing
and a 60° sweptback delta horizontal control were tested in conjunction
with the wing. The total planform area of each horizontal control was
16 percent of the total basic-wing area. Modifications to these hori-
zontal controls included addition of a full-span chord-extension to the
trapezoidal planform and a fence to the delta planform.

*Pitle, Unclassified.
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EFFECTS OF HORIZONTAL-CONTROL PLANFORM
AND WING-LEADING-EDGE MODIFICATION ON LOW-SPEED
LONGITUDINAL, AERODYNAMIC CHARACTERISTICS OF A
CANARD ATRPLANE CONFIGURATION*

By Bernmard Spencer, Jr.
SUMMARY

An investigation has been conducted at low subsonic speeds to
study the effects of horizontal-control planform and wing-leading-edge
modification on the longitudinal aerodynamic characteristics of a
general research canard airplane configuration. The basic wing of the
model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio
of 0.143, and an unswept 80-percent-chord line. Modifications to the
wing included addition of full-span and partial -span leading-edge chord-
extensions. Two horizontal-control planforms were employed in the study;
one was s 60° sweptback delta planform and the other was a trapezoidal
planform similar to that of the basic wing. Modifications to these hori-
zontal controls included addition of a full-span leading-edge chord-
extension to the trapezoidal planform and a fence to the delta planform.

For the basic-wing—trapezoidal-canard configuration, rather abrupt
increases in stability occurred at about 12° angle of attack. A slight
pitch-up tendency occurred for the delta-canard configuration at approx-
imately 8° angle of attack.

A comparison of the longitudinal control effectiveness for the
basic-wing—trapezoldal-canard comblnation and for the basic-wing—
delta~canard combination indicates higher values of control effective-
ness at low angles of attack for the trapezoidal canard. The control
effectiveness for the delta-canard configuration, however, is seen to
hold up for higher canard deflections and to higher angles cof attack.

Use of a full-span chord-extension deflected approximately 30° on the
trapezoidal canard greatly improved the control characteristies of this
configuration and enabled a sizeable Increase in trim 1ift to be realized.

*Pitle, Unclassified.
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The addition and deflection of a partial-span wing chord-extension
tended to alleviate wing-leading-edge separation at low angles of attack
and to reduce canard interference effects. Improvement in the high 1ift
characteristics of the basic wing were also noted for high chord-
extension deflections. The addition of the wing chord-extension pro-
vided rather large increases in meximum lift-drag ratios for both canard
configurations, as compared with those for the chord-extension-off con-
figurations, and also improved the pitching-moment characteristics of
the delta-canard configurations at high 1ift coefficients.

INTRODUCT ION

Because of the desirability of efficient supersonic cruise capa-
bility for both military and commercial transport aircraft, a consid-
erable amount of aerodynamic research has been directed towards the
development of supersonic configurations having high l1ift-drag ratios.
Because of the increase in longitudinal stability encountered at super-
sonic speeds the drag due to trimming the aircraft becomes a primary
factor in the supersonic efficiency. One method of reducing this trim-
drag problem is the use of a canard trimming surface, and considerable
research has been carried out on various canard configurations at super-
sonic speeds. (See, for example, refs. 1, 2, and 3.) Investigations
at subsonic speeds on some of the more promising designs (for example,
refs. 4 and 5) have indicated some rather serious subsonic problem
areas. ©Such factors as loss of control effectiveness and low 1lift
efficiency due to canard-wing interference create landing and take-off
problems which tend to offset the supersonic performance advantages.
Methods of improving canard control effectiveness by use of high-1ift
canard devices (refs. 6 and 7) have also been investigated and indi-
cated promising results with regard to increasing trim-1ift range and
allowable center-of-gravity travel. However, the presence of a canard-
induced flow field at the wing results in low values of overall-
configuration 1lifting efficiency and further decreases in efficiency
accompanying the canard deflection required for trim at moderate values
of 1ift coefficient.

The present investigation has been initiated to investigate methods
of improving the trim-1ift capability at low subsonic speeds by wing-
planform modifications that may reduce or take advantage of canard-
induced flow~field effects and to investigate the effect of canard
planform and modification on overall efficiency and control effective-
ness at moderate and high lifts. (The term "canard" is used in this
report to refer to the horizontal control of the canard configuration.)
The use of a wing-leading-edge chord-extension as a means of increasing
lift-drag ratio at subsonic speeds (as indicated in ref. 8) has also been
investigated. The wing employed in the investigation had a trapezoidal
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planform. A trapezoidal planform gave higher values of lift-drag ratio
at supersonic speeds than did a delta planform in the investigation of
reference 9 and also indicated higher values of lift-drag ratio at high
subsonic speeds in the results presented in reference k.

A trapezoidal-planform canard similar to the basic wing and a
delta-planform canard having an aspect ratio of 2.62 were investigated.
The total planform area of each canard surface was 16 percent of the
basic-wing planform area, and the distance from the moment reference
to the quarter-chord point of the mean aerodynamic chord for both plan-
forms was held constent.

SYMBOLS

Data in this paper are presented about the wind-axis system which
is shown in figure 1, with the coefficients nondimensionalized by the
area and mean aerodynamic chord of the basic wing. The moment refer-
ence point was located 4.06 inches or 0.225¢,; ahead of Ew/h for all
tests unless otherwise specified.

by, wing span, ft

Cp drag coefficient, g—rs—:ﬁ

CL, 1ift coefficient, g%fﬁ

C1,,max meximum 11ift coefficlent

CLa lift-curve slope per degree

ACL,c incremental 1ift due to presence of canard surface

Cm pitching-moment coefficient, Pitching moment
aSyCy

Cmsc canard-control-effectiveness parameter, ACp/dc

Ca canard mean aerodynamic chord

Ec/h quarter-chord point of canard mean aerodynemic chord

Cy wing mean aerodynemic chord, ft

Powds
ot




E/H
L/D

(L/D) pax

quarter-chord point of wing mean aerodynamic chord
lift-drag ratio

maximum lift-drag ratio

dynamic pressure, lb/sq ft

wing area, sq ft

angle of attack, deg

deflection of canard surface, deg

deflection of trapezoidal-canard-surface chord-extension,
deg

deflection of wing chord-extension, deg

wing-chord-extension deflection inboard of 0.332by/2
station

wing-chord-extension deflection outboard of O.552bw/2
station

1ift-efficiency factor, (Cr,wmc - On,wp) , or
(80 o) (Cr,sc - Cr,B)
Ay

wing on
(ACL,C)

wing off

Subscripts and ebbreviations:

B

body

wing

trapezoldal canard surface
delts canard surface

delta canard surface, with fence on
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MODEL

The model configurations and component parts are shown in figure 2.
The body was a clrcular ogive, symmetrical in all planes, with & maximum
diameter of 4.5 inches and a fineness ratio of 13.33.

The basic wing had a trapezoidal planform similar to that of the
basic trapezoidal wing of references 4, 5, and 9, an NACA 65A004 airfoil
section parallel to the plane of symmetry, an aspect ratio of 3.0, a
taper ratio of 0.143, and an unswept 80-percent-chord line. Full-span
and partial-span leading-edge chord-extensions, each of which had a tip
extension 20 percent of the basic-wing tip chord and a root extension
10 percent of the basic-wing root chord and was of flat-plate section
with a leading-edge radius of 1/16 inch, could be deflected down to a
meximum of approximately 30°. The partial-span chord-extension had the
root chord 7.50 inches from the fuselage center line, corresponding to
approximately O.93b/2 of the delta canard, and the inboard and outboard
sections could be differentially deflected.

The trapezoidal canard surface was of flat-plate section similar
in planform to the basic wing and had a total planform area equal to
16 percent of the total basic-wing area. The construction of the chord-
extension located on this canard was similar to that of the full-span
wing chord-extension. (See fig. 2.) The delta canard was also of flat-
plate section with a leading-edge sweep of 60°, an unswept trailing edge,
and a total planform area equal to 16 percent of the basic-wing area. A
fence was located at a 0.66 spanwise station on this canard surface.
(see fig. 3.) The hinge line for both canard surfaces corresponded to
the quarter-chord point of the mean aerodynamic chord of each canard
planform (fig. 2).

TESTS AND CORRECTIONS

The present investigation was conducted in the Langley 300-MPH
7- by 10-foot tunnel at a dynamic pressure of approximately 57 pounds
per square foot. The average test Reynolds number, based on the wing

mean aerodynamic chord, was approximately 2.10 X 106. The model was
mounted on a single support strut (fig. 3) and tested through an
angle-of-attack range from -2° to 24O and at 0° sideslip. All forces
and moments were measured by means of a mechanical balance system.

Blockage corrections determined by the method of reference 10
have been applied to the dynamlc pressure and drag, and jet-boundary
corrections determined by the method of reference 11 have been applied
to the angle of attack, pitching-moment, and drag coefficients. Drag
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coefficients have also been corrected for tunnel buoyancy effects. Tare
corrections for strut interference have also been applied to the 1lift
and pitching moment.

PRESENTATION OF RESULTS

The flgures that present the basic data for the confilgurations
investigated are presented in the following table:

Figure

Effect of the addition of delta and trapezoildal canard surfaces
on the longitudinal aerodynamic characteristics of various
configuration component parts; all control surfaces at zero
deflection . . . e e .. e e e L
Effect of various component parts on the longitudinal aerody-
namic characteristics of the basic-wing—trapezoidal -canard

configuration; all controls at zero deflection . . . . . . . . 5
Longitudinal control characteristics of the basic-wing-—
trapezoidal-canard configuration, WBC; . . . . .. 6

Longitudinal aerodynamic characteristics of the configuration

having a trapezoidal canard and the wing with full-span

leading-edge chord-extension, WBC1; 8,4 = 0° . . . . T
Longltudinal aerodynamic characteristics of the configuration

having a trapezoldal canard and the wing with partial-span

leading-edge chord-extension, WBCj; Sn w = o° .. .. . 8
Longitudinal aerodynamic characteristics of the configuration

having a trapezoldal canard and the wing with partial span

leading-edge chord-extension, WBCy; 8n w=-15° . ... .. 9
Longitudinal conttol characteristics of the configuration having

a trapezoidal canard surface and with the wing off, BC;:

Basic trapezoidal canard . . . . . . . B Ko 1 €9
Trapezoidal canard with full-span leading -edge chord-
extension; 8n,c1 = -30° . . . . . . .. . . 10(b)

Longitudinal aerodynamic characteristics of the configuration
having the basic wing and a trapezoidal canard with full-span
chord-extension, WBCy; 8n,el = -30° . . . . . . . . . . . .. 11

Longitudinal aerodynamic characteristics of the configuration
having a trapezoidal canard with full-span chord-extension and
the wing having partial-span chord-extension, Sn,cl = -3009;

Sn.w = -10° . . .. . e e e e e e e . e e e e 12
Longitudinal control characteristlcs of the configuration ‘having

a delta canard with wing off, BCo . . . . . .« e e . 13
Longitudinal control characteristics of the configuration having

a delta canard and the basic wing, WBC2 . . . . . . . . . . 14

-
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Figure

Longitudinal control characteristics of the configuration having

the basic wing and a delta canard with a fence, WBCg,f e e e s 15
Longitudinal control characteristics of the configuration having

a delta canard with a fence and the wing having a partial-span

chord-extension, WBCo2 £3 On,w = 300, L e e e e e e e e e e 16
Longitudinal control characteristics of the configuration having

a delta canard with a fence and the wing having differentially

deflected full-spen leading-edge chord-extension, WBCo,f - - - 17
Longitudinal control effectiveness of the basic trapezoidal

canard end the delta canard with and without the basic wing . . 18
The effects of canard modifications on the control effectiveness

associated with the basic-wing--canard configuration:

Trapezoidal canard; moment reference locations have been

adjusted to render approximately 5 percent low-1ift

StabIlity - « « o ¢ o e e e e oe e o R L1 -9

Delta canard with and without fence . . . . . « . . « « « « « & 19(b)
Comparison of the longitudinal stebility and control character-

istics assoclated with the trapezoidal canard having a full-

span chord-extension, &n,cl = -30°, and with the delta canard

having a fence; moment reference has been adjusted to render

approximately 5 percent low-11ft stability for both

configurations .« . . « « ¢ o 0 0 e e e e e e e e e e e e e 20
Comparison of the trends in L/D for various configurations with

the trapezoidal cenard and delta canard; 5. =0 . . . . . . . 21
Comparison of the cenard-induced flow effects on the wing at

various angles of attack for the configurations having a trape-

zoidal canard and the basic wing, and the wing with a partial-

span chord-extension deflected S10° L . e e e e e e e e e e e 22

DISCUSSION

Longitudinal Stability

A comparison of the longitudinal stability characteristics of the
two basic configurations is presented in figure 4, The data indicate
a rather abrupt increase in stability occurring at about 12° angle of
attack for the configuration having the trapezoldal canard while a slight
pitch-up tendency exists at about 8° for the configuration having the
delta canard.

In an effort to explain the nonlinear variation of pitching moment
with 1ift coefficient noted for the trapezoidal-canard configuration
the effect of various component parts for the trapezoidal-canard arrange-
ment has been investlgated (fig. 5). The rather large increase in

a



longitudinal stability for the wing--body—trapezoidal -canard configura-
tion between 12° and 20° angle of attack results from the combination

of increasing stability of the wing-body arrangement (associated with
wing-leading-edge separation) noted in this region and the decrease of
the canard-body instability. The abrupt pitch-up above 20° angle of
attack noted for the complete configuration may be attributed to the
pitch-up tendency of the basic wing due to tip stall, being aggravated
by the canard-induced flow-field effects, and to the direct canard
effect assoclated with its decreasing 1ift characteristics at high
angles of attack.

The slight pitch-up tendency for the configuration having the delta
canard can be seen from figure 13 to be associated with the canard itself
as indicated by increasing instability with increasing angle of attack.
This canard instability, when combined with the basic wing, which indi-
cates increasing stability at moderate angles of attack, as mentioned
in connection with the trapezoidal canard, results in a fairly linear
variation of pitching moment in the moderate angle-of-attack range
(fig. 4). The pitch-up tendency at high 1ift of the delta-canard con-
figuration is also directly related to the continued increasing canard
instability coupled with tip stall associated with the wing. In this
connection it is noted that addition and deflection of s partial-span
wing chord-extension reduced the pitch-up tendency of the delta-canard
configuration occurring at high 1ifts, by delaying the wing tip stall
to higher angles of attack (fig. 16). This improvement in wing 1ifting
capabilities is detrimental to the longitudinel stability associated
with the trapezoidal-canard configuration since the abrupt increase in
stability, noted for the basic configuration, is further increased in
the moderate 1ift range. (See, for examples, figs. 8 and 9.)

Thus, a comparison of the longitudinal stability characteristics of
the wing—trapezoidal -canard configuration with those of the wing—delta-
canard configuration indicates the importance of canard-planform selec-
tion for a given wing planform in determining the overall pitching-moment
characteristics.

Longitudinal Control

Figure 18 presents the control effectiveness for the trapezoidal
and delta canards and the effects of the addition of the basic wing.
The trapezoidal canard indicates higher values of control effectiveness
than did the delta control at low angles of attack for the wing-off
condition. The control effectiveness for the delta canard, however, is
seen to hold up for higher canard deflection and to higher angles of
attack due to the angle for CL,max Yeing greater for this planform.

The addition of the wing had little effect on the overall variation of

v oo |
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control effectiveness with angle of attack for these planforms, although
the magnitude is somewhat reduced because of canard-wing interference.

The use of a full-span chord-extension deflected approximately 30°
on the trapezoidal canard surface greatly improved the control charac-
teristics of this configuration (fig. 19(a)) and enabled a sizeable
increase in the trim-lift coefficient to be realized. The moment refer-
ence has been adjusted for both arrangements to render approximately
5 percent low-lift stability. It should be pointed out that the improve-
ment in the control power is believed to be due mainly to the deflection
~of the chord-extension rather than to the chord-extension itself. The
effect on the canard-body configuration can be seen in figure 10.

The addition of a fence to the delta-canard arrangement (fig. 19(b))
did not increase maximum trim 1ift although it reduced to some extent
the nonlinearities at the moderste 1ift coefficlents associated with
the fence-off configuration. Again the moment reference has been
adjusted to provide 5 percent low-1ift stability for both arrangements.

Figure 20 presents the longitudinal control characteristics of the
trapezoidal canard with a full-span chord-extenslon deflected approxi-
mately 30° and the delta canard with a fence. These canards are used
in combination with the wing having a partial-span chord-extension.

The addition of the partial-span wing chord-extenslon on the trape-
zoidal canard configuration indicated little or no improvement in the
control characteristics noted for this configuration without the partial-
span wing chord-extension. The addition of the partial-span wing chord-
extension to the delta canard configuration also had little effect on

the control effectiveness of this configuration. However, reduction in
the large variation in pitching moment at high 1lifts is noted, due to

the delay in wing tip stall by use of the partial-span wing
chord-extension.

Canard-Wing Interference

One problem area of prime interest in canard considerations at
subsonic speeds is the effect of the canard-induced flow on the overall
longitudinal aserodynamic characteristics of this type of configuration.
The canard efficlency factor 7, which is a measure of the amount of

avallable canard 1ift that is obtained, is directly related to the
average downwash at the wing induced by the canard surface. (see

refs. 2, 3, and 5.) If there were no interference between canard sur-
face and the wing, the lifting efficiency would be 1.0, and, if the
total smount of 1ift produced by the canard surface 1s lost at the wing
due to interference, the lifting efficiency is O.
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A comparison of the lifting capabilities of the delta and trape-
zoidal canard controls without high-1ift devices may be seen in fig-
ure 4, which presents the effects of canard planform on the aerodynamic
characteristics of the basic-wing—body configuration. An interesting
point to note is the fact that, even though the addition of the delta
canard to the basic-wing—body configuration was less destabilizing
than the trapezoidal canard, due to lower values of CL(1 for the delta

canard, slight increases in overall configuration 1lift over those
realized for the trapezoidal~-canard arrangement are present, which
suggests that the delta planform has higher lifting efficiency because
of less interference effects on the wing, as noted in reference 7. This
effect could also result in higher (L/D)max for the delta-canard
arrangement. Also, more wing area is located in the upwash field for
the delts canard surface than for the trapezoidal canard surface, pos-
5ibly resulting in the higher 1ifting efficiency as suggested in
reference 5.

Flgure 21 presents trends of (L/D) for some of the configurations
tested and indicates that the (L/D)max for the delta-canard configura-
tion approaches the (L/D)max realized for the basic-wing-—-body com-
bination closer than the trapezoidal-canard arrangement.

A partial-span wing-leading-edge chord-extension was added to the
wing at the estimated delta-canard tip vortex location for a = ho, in
an effort to take advantage of the canard upwash field and also to
reduce the canard-induced wing-tip stall characteristics of the basic
wing as noted in figure 4. Gains in (L/D)max are noted for both
canard-planform arrangements by use of the wing chord-extension. It
should be noted, however, that the partial-span wing chord-extension,
being located at the approximate delta-canard tip vortex location, had
its root section located in the downwash field of the trapezoidal canard
and, thereby, the effect of favorable upwash was reduced somewhat.

The effects of the addition of the wing chord-extension in reducing
canard-induced flow effects for the trapezoidal -canard arrangement may
be seen in figure 22, which presents visual flow studies at various
angles of attack. For o = ho, which is approximately the angle for
(L/D)max: the wing with chord-extension off has considerable outflow
along the leading edge due apparently to the canard-induced flow effect,
whereas the addition and slight deflection of the wing chord-extension
tends to straighten out the flow across the total wing span, which helps
explain the reason for the realized increases in (L/D)pgx with the
wing chord-extension.
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SUMMARY OF RESULTS

An investigation has been conducted at low subsonic speeds to study
the effects of canard planform and wing modification on the longitudinal
aerodynamic characteristics of general research canard-airplane configu-
ration. Trapezoidal and delta canard planforms were employed in the
investigation. Modifications to the canard surfaces included addition
of a full-span leading-edge chord-extension to the trapezoidal planform
and a fence to the delta planform. Modifications to the wing included
addition of full- and partial-span leading-edge chord-extensions. The
results of the investigation may be summarized in the following
observations:

1. For the basic-wing—trapezoldal-canard configuration, rather
abrupt increases in stability occurred at about 12° angle of attack.
A slight pitch-up tendency occurred for the delta-canard conflguration
at approximately 8° angle of attack.

2. A comparison of the longitudinal control effectiveness for the
basic-wing—trapezoidal-canard combination and for the basic-wing—
delta-canard combination indicates higher values of control effective-
ness at low angles of attack for the trapezoidal canard. The control
effectiveness for the delta-canard configuration, however, is seen to
hold up for higher canard deflections and to higher angles of attack.

Use of a full-span chord-extension deflected approximately 30° on the
trapezoidal canard greatly improved the control characteristics of this
configuration and enabled a sizeable increase in trim 1ift to be realized.

3. The addition and deflection of a partial-span wing chord-extenslon
tended to alleviate wing-leading-edge separation at low angles of attack
and to reduce canard interference effects. Improvement in the high
1ift characteristics of the basic wing were also noted for high chord-
extension deflections. The addition of the wing chord-extension provided
rather large increases in maximum lift-drag ratios for both canard con-
figurations, as compared with those for the chord-extension-off con-
figurations, and also improved the pitching-moment characteristics of
the delta-canard configurations at high 1ift coefficients.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., May 9, 1961.
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Wing chord-extension off Wing chord-extension on

1-61-2182

Figure 22.- Comparison of the canard-induced flow effects on the wing at
various angles of attack for the configurations having a trapezoidal
canard and the basic wing, and the wing with a partial-span chord-
extension deflected -10°.
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